COMPARAISON GOLAY(24,12) - HAMMING(7,4)

Les codes correcteurs d'erreur

I. Objectifs

Ce comparatif a pour but de comprendre et savoir dans quel cas Golay (24,12) est plus performant que Hamming (7,4) et vice versa.

II. Résultats mathématiques

Nous avons tout d'abord fait une étude mathématique de ces deux codes (voir Analyse mathématique de Hamming (7,4) et Golay(24,12)). De cette étude sont ressorties plusieurs indications intéressantes qui sont les suivantes :

- Taille du message codé (donc celui qu'il faudra faire transiter par le canal de transmission)
- Robustesse aux erreurs successives

Ainsi nous avons pu trouver que le code de Hamming rajoute 75% de redondance alors que le code de Golay en rajoute 100%.

D'autre part, le code de Hamming ne peut corriger qu'une seule erreur parmi les 7 bits du message codé tandis que Golay peut en corriger 3 parmi les 24 bits transmis.

Nous pouvons donc conclure qu'il est préférable d'utiliser Hamming lorsque le canal de transmission est relativement sûr et donc à un BER (Bit Error Ratio) faible. Golay quant à lui servira sur des communications où le canal de transmission est très brouillé. En effet avec ces 100% de redondance et sa capacité à corriger 3 erreurs parmi ses 24 bits transmis, il sera plus apte à retrouver les informations altérées.

III. Les simulations avec CCE Testeur

a. Protocole de test

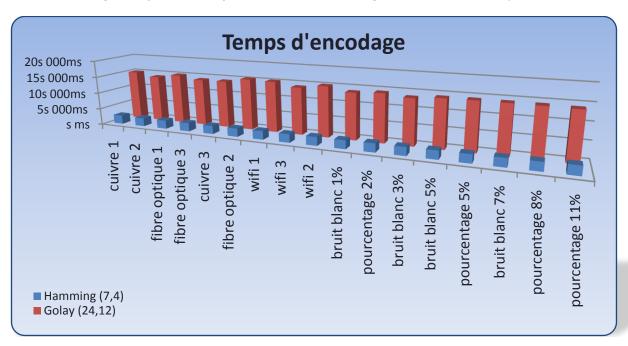
Pour effectuer la comparaison entre Hamming et Golay avec le logiciel, nous avons sélectionné une image de base qui sera identique pour tous les tests. Ensuite nous faisons varier tous les paramètres possibles de génération d'erreur. Ainsi nous obtenons 17 tests pour chaque code. Le logiciel nous retourne ensuite un certain nombre de résultats que nous devons sélectionner puis comparer.

Les 17 tests sont composés comme suit :

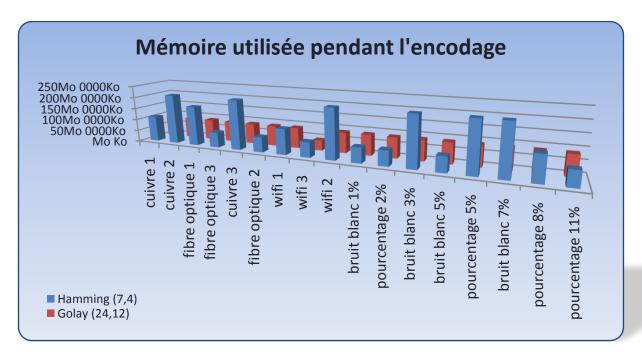
- Wifi: présélection du logiciel (≈BER à 10⁻⁴%)
- Cuivre : présélections du logiciel (≈BER à 10⁻⁶%)
- Fibre Optique : présélection du logiciel (≈BER à 10⁻⁹%)
- Pour les trois présélections ci-dessus, nous avons fait varier le nombre d'erreur successive (n-uplets) de 1 à 3.
- Bruit blanc (avec des BER de 1%, 3%, 5% et 7%)
- Pourcentage (avec des BER de 2%, 5%, 8% et 11%)

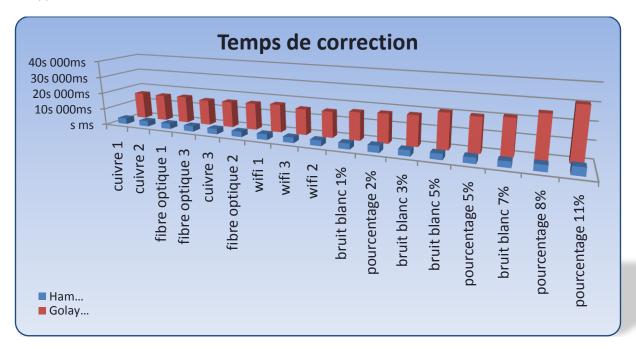
Tous les tests ont été effectués sur le même ordinateur.

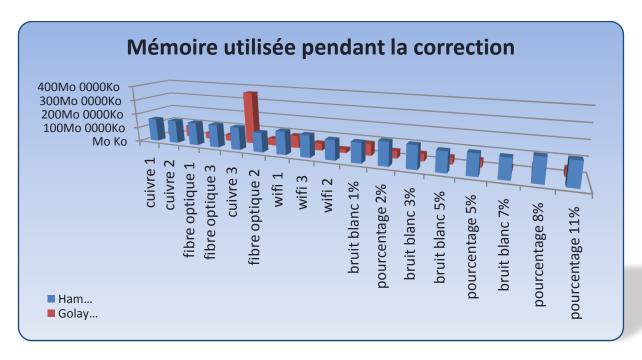
b. Résultats


Taille du fichier source		5760054
	Hamming (7,4)	Golay (24,12)
Taille du fichier encodé	10080094	11520108
Redondance ajouté (en %)	75%	100%

Nom du test	Correcteur	Mémoire utilisé pendant l'encodage	Temps d'encodage	Mémoire utilisé pendant la correction	Temps de correction	Nb erreurs générées	Nb non corrigées	Pourcentage d'erreurs corrigées
cuivre 1	Hamming 7.4	110Mo 0440Ko	2s 662ms	159Mo 0992Ko	3s 545ms	1	0	100%
cuivre 2	Hamming 7.4	214Mo 0852Ko	2s 507ms	159Mo 0740Ko	3s 366ms	1	1	0%
fibre optique 1	Hamming 7.4	170Mo 0724Ko	2s 540ms	159Mo 0764Ko	3s 371ms	0	0	100%
fibre optique 3	Hamming 7.4	65Mo 0864Ko	2s 544ms	159Mo 0752Ko	3s 387ms	2	3	-50%
cuivre 3	Hamming 7.4	214Mo 0892Ko	2s 489ms	156Mo 0500Ko	3s 259ms	2	3	-50%
fibre optique 2	Hamming 7.4	65Mo 0872Ko	2s 490ms	135Mo 0788Ko	3s 276ms	1	1	0%
wifi 1	Hamming 7.4	110Mo 0544Ko	2s 564ms	159Mo 0576Ko	3s 397ms	43	0	100%
wifi 3	Hamming 7.4	65Mo 0864Ko	2s 527ms	151Mo 0532Ko	3s 239ms	47	55	-17%
wifi 2	Hamming 7.4	214Mo 0832Ko	2s 552ms	135Mo 0780Ko	3s 330ms	53	66	-25%
bruit blanc 1%	Hamming 7.4	65Mo 0880Ko	2s 519ms	136Mo 0948Ko	3s 347ms	460783	0	100%
pourcentage 2%	Hamming 7.4	65Mo 0900Ko	2s 566ms	159Mo 0700Ko	3s 889ms	921979	5816	99%
bruit blanc 3%	Hamming 7.4	214Mo 0896Ko	2s 485ms	154Mo 0992Ko	3s 423ms	1383401	0	100%
bruit blanc 5%	Hamming 7.4	65Mo 0880Ko	2s 496ms	135Mo 0800Ko	3s 437ms	2351104	0	100%
pourcentage 5%	Hamming 7.4	214Mo 0892Ko	2s 498ms	141Mo 0336Ko	3s 374ms	2302398	89248	96%
bruit blanc 7%	Hamming 7.4	214Mo 0896Ko	2s 496ms	135Mo 0808Ko	3s 381ms	5725439	0	100%
pourcentage 8%	Hamming 7.4	109Mo 0996Ko	2s 559ms	159Mo 0756Ko	3s 626ms	3734450	402693	89%
pourcentage 11%	Hamming 7.4	65Mo 0864Ko	2s 667ms	158Mo 0448Ko	4s 654ms	5118657	800824	84%
cuivre 1	Golay 24.12	88Mo 0288Ko	15s 086ms	44Mo 0160Ko	16s 137ms	0	0	100%
cuivre 2	Golay 24.12	88Mo 0172Ko	14s 017ms	82Mo 0016Ko	15s 912ms	0	0	100%
fibre optique 1	Golay 24.12	88Mo 0600Ko	15s 087ms	46Mo 0584Ko	16s 272ms	0	0	100%
fibre optique 3	Golay 24.12	87Mo 0984Ko	14s 135ms	45Mo 0852Ko	15s 334ms	0	0	100%
cuivre 3	Golay 24.12	87Mo 0988Ko	14s 223ms	363Mo 0208Ko	15s 727ms	2	0	100%
fibre optique 2	Golay 24.12	87Mo 0980Ko	15s 424ms	47Mo 0404Ko	16s 138ms	2	0	100%
wifi 1	Golay 24.12	88Mo 0132Ko	15s 275ms	85Mo 0484Ko	16s 820ms	41	0	100%
wifi 3	Golay 24.12	43Mo 0884Ko	14s 127ms	49Mo 0636Ko	15s 470ms	47	0	100%
wifi 2	Golay 24.12	87Mo 0988Ko	15s 123ms	25Mo 0688Ko	15s 531ms	51	0	100%
bruit blanc 1%	Golay 24.13	88Mo 0184Ko	13s 871ms	82Mo 0028Ko	16s 613ms	460373	0	100%
pourcentage 2%	Golay 24.12	87Mo 0100Ko	14s 343ms	49Mo 0652Ko	17s 269ms	920906	0	100%
bruit blanc 3%	Golay 24.12	88Mo 0152Ko	13s 617ms	49Mo 0832Ko	17s 845ms	1382400	0	100%
bruit blanc 5%	Golay 24.12	88Mo 0640Ko	14s 231ms	45Mo 0336Ko	20s 869ms	2303863	0	100%
pourcentage 5%	Golay 24.12	88Mo 0760Ko	14s 320ms	45Mo 0424Ko	20s 116ms	2306392	0	100%
bruit blanc 7%	Golay 24.12	88Mo 0268Ko	14s 268ms	25Mo 0788Ko	21s 090ms	3225184	0	100%
pourcentage 8%	Golay 24.12	87Mo 0980Ko	14s 247ms	49Mo 0620Ko	24s 753ms	3687536	0	100%
pourcentage 11%	Golay 24.12	87Mo 0992Ko	14s 101ms	49Mo 0544Ko	30s 710ms	5069195	118804	98%


c. Interprétation


Commençons d'abord par le résultat le plus significatif : a-t-il corrigé ? Oui et non, en effet on peut voir que Golay (24,12) est excellent pour corriger les types d'erreur que nous lui avons fait subir (pas étonnant non plus au vu de sa redondance). Hamming a quelques problèmes. Comme nous l'a montré l'étude mathématique, il est incapable de corriger les uplets. Il va même jusqu'à rajouter des erreurs. De plus dans de hauts pourcentages d'erreur, Hamming corrige moins bien que Golay. Notons aussi que lorsque le bruit est régulier (bruit blanc), les deux codes corrigent très bien voire parfaitement.


On voit clairement sur ce graphique et avec les résultats que Golay est cinq fois plus long à encoder le message (avec nos implémentations). On peut expliquer en partie cette différence par la quantité supérieure de calcul permettant d'ajouter la redondance.

On peut voir sur ce graphique que le code de Hamming consomme en moyenne davantage de mémoire que le code de Golay. Cet aspect aura un impact important dans le type d'utilisation de ce code.

On note sur ce graphique, comme pour le codage, que Golay est beaucoup plus long que Hamming, notamment quand le nombre d'erreurs est important.

Encore plus que pour le codage, les ressources mémoires sont grandement sollicitées par Hamming alors que Golay reste faible sauf dans certains cas où l'on a soit des triplés soit un grand nombre d'erreurs.

IV. Conclusion

Tous ces résultats tant mathématiques que par simulation nous permettent de définir des plages d'utilisation pour ces deux codes. Un code peut être défini par 4 caractères : redondance de l'information, capacité à corriger des n-uplets, temps d'encodage décodage, ressources nécessaires.

Hamming est donc plutôt adapté quand on veut émettre un minimum de redondance, sur un canal peut bruité et de manière rapide tout en ayant suffisamment de ressource derrière.

Golay est lui adapté quand on peut émettre des données sans se soucier de la quantité, sur un canal fortement bruité et avec des périphériques ayant peu de ressource par rapport à Hamming.